
shenjh@asia.edu.tw

An Adjustable-Tree Method for Processing
Reverse Nearest Neighbor Moving Queries

Ye-In Chang1, Jun-Hong Shen2,3(&), and Che-Min Chu1

1 Department of Computer Science and Engineering,
National Sun Yat-Sen University, Kaohsiung City 804, Taiwan

changyi@cse.nsysu.edu.tw, roger8988@gmail.com
2 Department of Information Communication,
Asia University, Taichung City 413, Taiwan

shenjh@asia.edu.tw
3 Department of Medical Research, China Medical University Hospital,

China Medical University, Taichung City 404, Taiwan

Abstract. For a reverse nearest neighbor (RNN) query, the query object will
find the data objects regard it as their nearest neighbor. Over the past few years,
the RNN query on the road network database has attracted much attention. In the
previous research, a multi-way tree efficiently solves the issue about moving
data objects for the RNN query. However, in the scenario that the query object
reaches a new location, i.e., the moving query, the multi-way tree needs to be
reconstructed, which takes long time. Therefore, in this paper, we propose an
adjustable-tree method for solving the above problem and improving the per-
formance efficiency for processing moving queries. Via the performance eval-
uation, our proposed method performs better than the original multi-way tree
method.

Keywords: Reverse nearest neighbor queries � Road network � Spatial
database

1 Introduction

In recent years, the wireless communication technologies, mobile systems, and Global
Positioning Systems (GPS) have been well developed [1]. Nowadays, mobile services
are very popular so that the spatial database management for providing such services
has attracted much attention. One of the fundamental research issues in the spatial
database system is the reverse nearest neighbor (RNN) query. For an RNN query, the
query object will find the data objects regard it as their nearest neighbor [4, 5, 9, 11].
For example, a convenience store owner wants to evaluate the possible location to open
a new store. This can be regarded as an RNN query that evaluates how many buildings
consider this possible location as their nearest neighbor.

Processing RNN queries over moving objects in road networks is a hot research
topic over the past few years. An RNN query on moving objects is to search for the
objects which take query point q as their nearest neighbor. The shortest network path
distance dist Q; pð Þ, between query point Q and object p, is calculated based on the

© Springer Nature Singapore Pte Ltd. 2020
J. C. Hung et al. (Eds.): FC 2019, LNEE 551, pp. 362–371, 2020.
https://doi.org/10.1007/978-981-15-3250-4_43

shenjh@asia.edu.tw

traffic situation in a road network [7]. The searching region of object p is defined as the
circle centered at p with radius dist Q; pð Þ, and adjacent edges within it are verified to
make sure that there is no other query points on these edges [7]. RNN queries can be
classified into monochromatic and bichromatic queries [2, 10]. For a monochromatic
RNN query, the query object and the data objects are of the same type. For a
bichromatic RNN query, they are of two different types. In this paper, we investigate
the bichromatic RNN queries.

In the literature, there are some research efforts to process RNN queries in road
networks. In [6, 8], they used Voronoi diagram to solve RNN problems in road net-
works. However, the Voronoi diagram-based methods did not consider changing of the
traffic situation so that they can be applied to only the RNN query with static data. In
[2], the authors proposed a DLM tree, containing a range tree and the corresponding
verifying trees, for processing the monochromatic reverse k nearest neighbor queries. In
[7], the OpInitialBN-RNN method applied the multi-way tree to process bichromatic
RNN queries on moving objects in road networks. However, when the query object
moves to a new location in the road network, this method has to reconstruct the multi-
way tree. As a result, it will take long time to find the results of the RNN query.

Therefore, in this paper, we propose an adjustable-tree method, which is also a
multi-way tree, for processing RNN queries on the moving query in the road network.
The proposed method rotates the original multi-way tree when the query object moves.
After that, the proposed method shrinks/extends the multi-way tree from the leaf nodes
according to the new location of the query object. The proposed method does not
reconstruct the multi-way tree. In this way, the proposed method can improve the
performance efficiency on finding the results of the RNN query. The contribution of
this work is that the proposed method supports continuous RNN queries for moving
query and data objects without the reconstruction of the tree structure.

The rest of this paper is organized as follows. Section 2 presents the proposed
adjust-tree method for RNN queries of dynamic datasets in road networks. Section 3
compares the proposed method with the existing method. Section 4 evaluates the
performance efficiency. Section 5 concludes this paper.

2 The Adjustable-Tree Method

In this section, we present our proposed adjustable-tree method for processing RNN
moving queries. The proposed method contains two parts, the construction of the
adjustable-tree and the corresponding incremental maintenance. In the construction of
the adjustable-tree, the proposed method uses the PMR quadtree [3] to organize the
road network and constructs the multi-way tree from the road network to answer the
RNN query. This part of the proposed method is the same as that of the OpInitialBN-
RNN method [7].

There are three moving cases in the maintenance of the multi-way tree. In Case 1,
the query object is static, and the data objects move to a new location. In Case 2, the
query object moves to a new location, and the data objects are static. In Case 3, both the
query object and data objects move to new locations. The OpInitialBN-RNN method
can deal with only the RNN queries in Case 1. By contrast, the proposed method can

An Adjustable-Tree Method for Processing RNN Moving Queries 363

shenjh@asia.edu.tw

deal with the RNN queries in all the cases. Instead of reconstructing the multi-way tree,
the proposed method adjusts the multi-way tree when the query object and data objects
move.

2.1 The Construction of the Adjustable-Tree

The proposed method uses a PMR quadtree [3] to store a road network, which is
composed of nodes and edges. Edges are inserted into blocks of a PMR quadtree one
by one. When the number of edges in a block exceeds the designated splitting
threshold, the block will be partitioned into four equal-sized grid cells to store these
edges. Consider a road network in Fig. 1 for example. The corresponding PMR
quadtree is shown in Fig. 2, where the splitting threshold is set to 5.

The real index structure of the PMRquadtree in Fig. 2 is shown in Fig. 3. In this index
structure, the block of the PMR quad-tree is linked to the edge list, and the edge list is
linked to the node list and the object list. For example, edge n5n12 is in the block of the
PMR quadtree.Whenwe follow this link to the edge list from the block, we can know that
there is no object on edge n5n12, and this edge is between node n5 and node n12.

The adjustable-tree, which is a multi-way tree, for answering an RNN query Q is
constructed based on extending the road network stored in the PMR quadtree and
verifying nodes. The extending of the adjustable-tree to find the next node is based on
the Dijkstra strategy. Data objects on the corresponding edge, and the distance between
the new extended node and it parent node are recorded during extending of the new
node. Take RNN query Q1 in Fig. 1 for example. Query object Q1 is the root of its
adjustable-tree shown in Fig. 4a. Based on the Dijkstra strategy, node n1, the nearest
node from Q1 in Fig. 1, is inserted into the adjustable-tree, and is verified as the result
of the RNN query. The verifying step for a node or data object is described later.

Fig. 1. A road network

364 Y.-I. Chang et al.

shenjh@asia.edu.tw

During the extending of the road network, if the node is the result of the RNN
query, it is inserted into the adjustable-tree. If the node is not the result of the RNN
query, this node is marked as a bound node and inserted into the adjustable-tree. Since
the bound node is not the result of the RNN query, it will not be further extended. After
node n1 is visited, node n3 is extended and verified as a bound node so that it will not
be further extended. The extending of the road network is iteratively spanned until no
adjacent node can be extended. The node with no adjacent node to extend is called an
unbound node. Figure 4a shows the adjustable-tree for answering RNN query Q1. In
Fig. 4a, nodes n9, n10, n11, n13, n14, n19, n20 and n21 are unbound nodes.

During the extending of the road network, the verifying step for an extended node
n is to verify whether the node is the result of RNN query Q or not. In this step,

Fig. 2. The PMR quadtree

Fig. 3. The index structures for the PMR quadtree

An Adjustable-Tree Method for Processing RNN Moving Queries 365

shenjh@asia.edu.tw

we should examine whether it exists another query object on the adjacent edges within
the search region for node n, which is the circle centered at node n with radius
dist Q; nð Þ. Note that dist Q; nð Þ is the shortest path distance between query object
Q and node n. For example, in Fig. 1 node n5 is extended and should be verified. The
search region for node n5 is the circle centered at node n5 with radius r5, which is equal
to dist Q1; n2ð Þ þ dist n2; n5ð Þ. In this search region, there is another query object Q3,
besides Q1. Therefore, the shortest distance between Q3 and node n5, dist Q3; n5ð Þ,
should be compared with that between Q1 and node n5, dist Q1; n5ð Þ. Since
dist Q3; n5ð Þ [dist Q1; n5ð Þ, node n5 is the result of RNN query Q1. In addition, the
verifying step could also be used to verify whether the data objects are the RNN result
of the query.

In Fig. 4a, data objects p2, p3 and p8 are the result of RNN query Q1. Data objects
p1 and p4 are on the edges whose end node is the bound node so that they should be
further verified to examine whether they are the result of Q1. In this case, p1 is the
result, but p4 is not. As a result, the answer of RNN query Q1 is p1; p2; p3; p8f g.

Fig. 4. The adjustable-tree: (a) the original multi-way tree; (b) the tree after rotating; (c) the final
adjustable-tree; (d) the tree after the data objects moved.

366 Y.-I. Chang et al.

shenjh@asia.edu.tw

2.2 The Incremental Maintenance of the Adjustable-Tree

When the query object moves to a new location, the proposed method will use the
query object at the new location as the new root by adjusting the original adjustable-
tree with shrinking/extending the leaf nodes. The detail of the incremental maintenance
of the adjustable-tree can be found in [1]. In Figs. 1, 4a, query object Q1 moves to edge
n1n3 from edge n1n2. The original adjustable-tree is rotated to make query Q1 of the
new location as the root node, dividing the tree into two parts, the subtree rooted by
node n3 and that rooted by node n1, as shown in Fig. 4b. After that, the leaf nodes need
to be updated. If the distance between the new root and leaf node x is longer than that
between the old root node and leaf node x, node x should be evaluated to shrink;
otherwise, node x should be evaluated to extend.

In Figs. 1, 4b, since the distances between the new root node and nodes n9, n10 and
n19 are longer than those between the old root node and them, they should be evaluated
to shrink. After the verification, they are still the result of RNN query Q1 so that they do
not need to be shrunk. When node n6 is verified, it is a bound node. Its ancestor nodes
should be upward verified until a node y that is not the result of Q1 and its parent node
is the result of Q1 is found. In this case, the adjustable-tree is shrunk, and a new bound
node n2 is found, as shown in Fig. 4c.

In Fig. 4b, since the distance between the new root node and node n3 is shorter than
that between the old root node and node n3, it should be evaluated to extend. After the
verification, node n3 is the result of Q1 and no longer the bound node. Therefore, it
should be downward extended. In the process of extending, if the leaf node is a bound
node, the node needs to be verified whether the node is still a bound node after the
rotation of the tree. If the node is not a bound node, the adjustable-tree is further
extended until the new bound node that is not the result of the RNN query or no
adjacent node can be extended. If a leaf node is an unbound node, there is no extending
from this node due to no adjacent node to be extended. In this example, the adjustable-
tree is extended from node n3 such that unbound node n7 and bound node n8 are found,
as shown in Fig. 4c. After extending/shrinking the adjustable-tree, the final adjustable-
tree of RNN query Q1 is shown in Fig. 4c, where data objects p1, p2 and p5 are on the
corresponding edges. The result of Q1 is p1; p2; p5f g after query object Q1 moved to
the new location.

To deal with the moving of a data object, there are three cases, incoming, outgoing,
and moving within the tree. For the same example mentioned above, after query object
Q1 moved, data object p3 moves to edge n1n2 from edge n2n5 shown in Fig. 1. It is an
incoming object for the adjustable-tree, as shown in Fig. 4d. Next, data object p1
moves to edge n2n5 from edge n1n3 shown in Fig. 1, and it is an outgoing object for the
adjustable-tree shown in Fig. 4d. The outgoing object is not the result of the RNN
query. Finally, data object p2 moves to edge n4n9 from edge n1n4 shown in Fig. 1,
which is the last case of the moving of a data object. The adjustable-tree of Q1 after
moving of the data objects is shown in Fig. 4d. If a data object moves to an edge whose
end node is a bound node, the data object should be verified whether it is the result of
the RNN query. Since dist Q1; p3ð Þ\ dist Q3; p3ð Þ, data object p3 is the result of Q1.
The final result of Q1 after moving of the data objects is p2; p3; p5f g.

An Adjustable-Tree Method for Processing RNN Moving Queries 367

shenjh@asia.edu.tw

3 Comparison

In this section, we compare the proposed method with the OpInitialBN-RNN method
[7] via an example shown in Fig. 5a. We use the OpInitialBN-RNN method to con-
struct the corresponding multi-way tree shown in Fig. 5b. In Fig. 5a, a query object Q1

on edge n1n2 moves to edge n2n5. In this case, the OpInitialBN-RNN method has to
construct a new multi-way tree, whereas the proposed method adjusts the old multi-
way tree to get the new multi-way tree. Both methods have the same new multi-way
tree shown in Fig. 5c. In this example, the OpInitialBN-RNN method has to extend and
verify all of eight nodes which are inserted into the multi-way tree in this road network.
However, the proposed method needs to verify only four nodes n1, n5, n8 and n9 in the
initial multi-way tree to extend or shrink the initial tree. Nodes n3, n4 and n8 are farther

Fig. 5. A comparison: (a) query object Q1 moves to a new location; (b) the initial multi-way
tree; (c) the new multi-way tree after adjusting.

368 Y.-I. Chang et al.

shenjh@asia.edu.tw

away from query Q1, and we need to verify only node n8 and node n1, which is the
parent node of n3 and n4. After moving of query Q1, node n5 is close to Q1. We should
then verify node n5 and its adjacent node n9. This comparison has shown that the
proposed method performs better than the OpInitialBN-RNN method when the query
object moves to a new location.

4 Performance Evaluation

In this section, we evaluate the performance efficiency on the average CPU time and
the number of verified nodes of the proposed method with the OpInitialBN-RNN
method [7]. The experiments were conducted in the real road network dataset, con-
taining 18,263 nodes and 23,874 edges. Query objects and data objects were generated
in the road network dataset at random.

In the first experiment, the number of data objects is set to 30,000, and the number
of query objects is set to 40. The number of moving edges for a query object is varied
from 2 to 10 with an interval of 2. Figure 6 shows that the processing (CPU) time of the
proposed method is faster than that of the OpInitialBN-RNN method. The
OpInitialBN-RNN method needs to verify all the nodes in the multi-way tree when a
query object moves, but the proposed method does not. Because the OpInitialBN-RNN
method will reconstruct the multi-way tree when the query object moves, the number of
moving edges for a query object will not affect the processing time. However, the
processing time of the proposed method will increase when the number of moving
edges for a query object increases. This is because the number of nodes which need to
be verified increases.

In the second experiment, we evaluate the corresponding number of verified nodes
in both methods. The number of data objects and the number of query objects are set to
the same values as those in the first experiment. The number of moving edges for a

Fig. 6. A comparison of the processing time

An Adjustable-Tree Method for Processing RNN Moving Queries 369

shenjh@asia.edu.tw

query object is also varied from 2 to 10 with an interval of 2. Figure 7 shows that the
number of verified nodes of the proposed method is less than that of the OpInitialBN-
RNN method. The OpInitialBN-RNN method needs to verify all the nodes in multi-
way tree when a query object moves, but the proposed method does not. The number of
verified nodes will increase when the number of moving edges for a query object
increases. The number of verified nodes is affected by the random distribution of the
query objects in both the proposed method and the OpInitialBN-RNN method.

5 Conclusion

In this paper, we propose an adjustable-tree method for improving the performance of
reverse nearest neighbor (RNN) queries to deal with the situation in which the query
object is moving in road networks. The proposed method can deal with the case that
even though the query object and data objects are moving at the same time. From the
performance evaluation, the proposed method performs better than the existing method.

Acknowledgments. This research was supported by grant MOST 104-2221-E-110-077 from
the Ministry of Science and Technology, Taiwan.

References

1. Chiu, C.M.: An incremental approach to reverse nearest neighbor queries on the moving
query in road networks. Master’s thesis. National Sun Yat-Sen University, Taiwan (2014)

Fig. 7. A comparison of the number of verified nodes

370 Y.-I. Chang et al.

shenjh@asia.edu.tw

2. Guohui, L., Yanhong, L., Jianjun, L., Shu, L., Fumin, Y.: Continuous reverse k nearest
neighbor monitoring on moving objects in road networks. Inf. Syst. 35(8), 860–883 (2010)

3. Hoel, E.G., Samet, H.: Efficient processing of spatial queries in line segment databases. In:
Proceedings of the Second International Symposium on Advances in Spatial Databases,
pp. 237–256 (1991)

4. Kang, J.M., Mokbel, M.F., Shekhar, S., Xia, T., Zhang, D.: Incremental and general
evaluation of reverse nearest neighbors. IEEE Trans. Knowl. Data Eng. 22(7), 983–999
(2010)

5. Li, J., Li, Y., Shen, P., Xia, X., Zong, C., Xia, C.: Reverse k nearest neighbor queries in
time-dependent road networks. In: Proceedings of IEEE 20th International Conference on
High Performance Computing and Communications, pp. 1064–1069 (2018)

6. Safar, M., Ibrahimi, D., Taniar, D.: Voronoi-based reverse nearest neighbor query processing
on spatial networks. Multimedia Syst. 15(5), 295–308 (2009)

7. Sun, H.L., Jiang, C., Liu, J.L., Sun, L.: Continuous reverse nearest neighbor queries on
moving objects in road networks. In: Proceedings of the 9th International Conference on
Web-Age Information Management, pp. 238–245 (2008)

8. Taniar, D., Safar, M., Tran, Q.T., Rahayu, W., Park, J.H.: Spatial network RNN queries in
GIS. Comput. J. 54(4), 617–627 (2011)

9. Tao, Y., Yiu, M.L., Mamoulis, N.: Reverse nearest neighbor search in metric spaces. IEEE
Trans. Knowl. Data Eng. 18(9), 1239–1252 (2006)

10. Tran, Q.T., Taniar, D., Safar, M.: Bichromatic reverse nearest-neighbor search in mobile
systems. Syst. J. 4(2), 230–242 (2010)

11. Wu, W., Yang, F., Chan, C.Y., Tan, K.L.: Continuous reverse k-nearest-neighbor
monitoring. In: Proceedings of the 9th International Conference on Mobile Data
Management, pp. 132–139 (2008)

An Adjustable-Tree Method for Processing RNN Moving Queries 371

